M1.
(a) Alpha - two protons and two neutrons

Beta - electron from the nucleus

Gamma - electromagnetic radiation
(b) Gamma

Beta
Alpha
allow 1 mark for 1 or 2 correct
(c) any two from:

- (radioactive) source not pointed at students
- (radioactive) source outside the box for minimum time necessary
- safety glasses or eye protection or do not look at source
- gloves
- (radioactive) source held away from body
- (radioactive) source held with tongs / forceps
accept any other sensible and practical suggestion
(d) half-life $=80 \mathrm{~s}$
counts / s after $200 \mathrm{~s}=71$
accept an answer of 70
(e) very small amount of radiation emitted accept similar / same level as background radiation

M2. (a) alpha particles cannot pass through... do not accept gamma particles...
or
alpha particles can pass through a very thin sheet of paper / card credit answers where correct amendments are made to boxed statement
(b) (i) horizontal and vertical line drawn at correct positions on the graph accept a cross drawn at $4500 / 500$ on the curve
or
two pairs of lines drawn, for example, at 600 and 300 accept a horizontal line drawn at 500 on its own do not accept vertical lines only
(ii) 4500 million years
no (measurable) change in count rate do not accept have not got the equipment do not accept it's harmful (to children) if neither of the above points scored, accept not enough time to measure it for 1 mark

M3. (a) neutrons and protons
(b) 0
(+)1
(c) (i) total positive charge $=$ total negative charge accept protons and electrons have an equal opposite charge
(because) no of protons = no of electrons
(ii) ion
positive
(d) Marks awarded for this answer will be determined by the quality of communication as well as the standard of the scientific response. Examiners should apply a best-fit approach to the marking.

0 marks

No relevant content

Level 1 (1-2 marks)

There is a basic description of at least one of the particles in terms of its characteristics.

Level 2 (3-4 marks)

There is a clear description of the characteristics of both particles or
a full description of either alpha or beta particles in terms of their characteristics.

Level 3 (5-6 marks)

There is a clear and detailed description of both alpha and beta particles in terms of their characteristics.

examples of the physics points made in the response:

structure

- alpha particle consists of a helium nucleus
- alpha particle consists of 2 protons and 2 neutrons
- a beta particle is an electron
- a beta particle comes from the nucleus

penetration

- alpha particles are very poorly penetrating
- alpha particles can penetrate a few cm in air
- alpha particles are absorbed by skin
- alpha particles are absorbed by thin paper
- beta particles can penetrate several metres of air
- beta particles can pass through thin metal plate / foil
- beta particles can travel further than alpha particles in air
- beta particles can travel further than alpha particles in materials eg metals

deflection

- alpha particles and beta particles are deflected in opposite directions in an electric field
- beta particles are deflected more than alpha particles
- alpha particles have a greater charge than beta particles but beta particles have much less mass
or
beta particles have a greater specific charge than alpha particles

M4. (a) (i) L
(ii) \mathbf{M}
(b) To make a smoke detector work.
(c) 40
no tolerance

M5. (a) 1 mark for each correct line

List A
Type of nuclear radiation

List B
Property of radiation

if more than 1 line is drawn from any box in List \boldsymbol{A}, none of those lines gain any credit
(b) (i) (the detector) reading had gone down
'it' equals detector reading
accept the reading in the table is the smallest
accept 101 is (much) lower than other readings / a specific value eg 150
do not accept this answer if it indicates the readings are the thickness
more beta (particles / radiation) is being absorbed / stopped accept radiation for beta particles / radiation accept fewer particles being detected
(ii) six years
(iii) alpha would not penetrate the cardboard
accept the basic property - alpha (particles) cannot pass through paper/card
accept alpha (particles) are less penetrating (than beta)
range in air is neutral

M6. (a) nucleus do not accept core / centre / middle
(b) radiation damages our cells
accept radiation is dangerous / poisonous / harmful / toxic accept radiation can cause cancer / kills cells / change DNA / cause mutations / harm health accept so precautions can be taken accept so they know they may be exposed to / harmed by radiation it refers to radiation (source) to stop people being harmed is insufficient
(c) C
(d) gamma
gamma will pass through the lead
reason only scores if gamma chosen
or
alpha and beta will not pass through lead
accept correct symbols for alpha, beta and gamma
(e) (i) range of alpha too short accept alpha would not reach detector or alpha absorbed whether box is full or empty accept alpha (always) absorbed by box / card accept alpha will not pass through the box / card alphas cannot pass through objects / solids is insufficient alpha not strong enough is insufficient
(ii) \mathbf{M} reason only scores if \boldsymbol{M} chosen
less radiation / beta (particles) absorbed accept more radiation / beta particles pass through
or
more radiation absorbed by full boxes
accept reading is higher

M7.
(a) 3 lines correct

allow 1 mark for each correct line
if more than one line is drawn from any type of radiation box then all of those lines are wrong
(b) Gamma radiation will pass through the body
(c) half
(d) protons

